
Beyond /dev/urandom:
The State of Randomness in Linux
Shea Polansky
2020-08-27



Background: Random Number Generation

• Computers are deterministic machines
• Deterministic ≠ random

• But random numbers are important
• Obvious: key generation

• But also: a large portion of crypto schemes are completely broken in the absence of 
unpredictable random numbers

• How do we resolve this quandary?



Types of Random Number Generators

Pseudorandom Number 
Generators (PRNGs)

• Can be very fast

• Usually “seeded” with a single value

• Can have very long periods (time until 
the values repeat)

• Not designed to be unpredictable
• No guarantee that someone who sees N 

values can’t predict value N+1

Cryptographically Secure 
PRNGs (CSPRNGs)

• Usually not that fast

• “Seeded” with as much “entropy” as 
possible
• Time, I/O events, process info, hardware, 

network data, etc.

• May have shorter periods

• Most importantly: designed to be 
unpredictable



Random Number Generation in Practice

• Like most things, you aren’t doing this yourself

• Default RNG: math.random() (or equivalent)
• Basic PRNG — fast, medium period, seeded with the time

• Provided by LibC / language standard library

• Not sufficient for cryptographic purposes

• Standard libraries do not typically provide their own CSPRNG
• CSPRNGs require diverse entropy sources — standard libraries in userland can’t provide

• Also dangerous to get wrong, so push the responsibility elsewhere



Random Number Generation in Practice — CSPRNGs

• If your standard library doesn’t give you a CSPRNG, where do you get one?
• The OS! Specifically, the kernel.

• Linux originally provided a single source of randomness: /dev/random
• Seeded by the kernel automatically by a variety of sources

• Includes an internal entropy estimator

• Won’t provide numbers if the entropy estimate is too low (blocks)



Aside: Sources of Entropy

• So why do we need multiple sources of entropy anyway?

• Computers are deterministic — if an attacker can provide the same inputs to the 
same code, they get the same outputs
• Code is open source (plus Kerckhoff’s Principle) 
• Therefore we must make the inputs difficult to predict

• Sources of entropy are usually things that only the kernel can see
• Idea is that even a local attacker can’t predict, but if they can read kernel memory then they 

don’t need to predict RNG output
• I/O ops, network traffic, time, etc.



Sources of Entropy — Hardware RNGs

Newer CPUs have additional 
source of entropy: hardware RNG

x86: RDRAND / RDSEED instructions fill memory with 
random bytes; ARM has equivalent

Randomness is provided 
via hardware

There are lots of ways to do this… but the actual 
implementation is only known to CPU manufacturer
Claims to be “truly random” numbers

So why not just use that and skip the effort of making a CSPRNG?



Why not skip the CSPRNG and use a hardware RNG 
if one is available?

Speed
• Hardware RNG can provide bytes 

only so fast
• CSPRNGs are as fast as the 

general CPU

1
Verifiability
• We don’t know how the hardware 

RNG works
• This is an obvious target to backdoor
• If we relied solely on it and it was

backdoored, we’d be f*cked

2
Single point of failure
• If there's a problem with the 

hardware RNG, also f*cked.

3



AMD RDRAND Bug

• AMD CPUs have a history of bugs in 
their RNG

• Most prominently, Zen 2 μArch
• RDRAND/RDSEED return a buffer of 

all 1’s

• Pre-Ryzen architectures have other 
issues after suspend/resume
• Fixed in Zen 2, but literally turned off 
RDRAND support bit in older CPUs



Relevant XKCD

https://xkcd.com/221/

https://xkcd.com/221/


So anyway, kernel CSPRNGs

• Linux originally provided just /dev/random
• “Blocks” if internal entropy estimate is low

• Designed this way in case of a theoretical attack on entropy stretching algorithms

• In the meantime, also created /dev/urandom (“unlimited”/“unblocking”)
• Uses entropy stretching algorithm to provide unlimited output 

• Original advice was to use /dev/random for extremely critical ops (e.g., master key 
generation), /dev/urandom otherwise.



The Great 
Random 
Debate

• This led to a years-long internet flame war argument 
about when if at all one should use /dev/{u,}random

• So when should you use them? 

• The old answer: Always use /dev/urandom. 

• Sole exception: if you’re PID 0, since the random pool 
may not be initialized yet and it won’t tell you. 



Problems With /dev/{u,}random

• /dev/* is not always available
• Containers

• If you are in a situation where you might have an uninitialized entropy pool, no 
way to know that except by polling /dev/random before /dev/urandom

• Solution: getrandom(2)



CSPRNG System Calls —
getrandom(2) / getentropy(3)

• Added ≈2014

• Added to GlibC in 2017 due to backward compatibility issues (what to do if the system calls 
aren’t available)

• getrandom(2) returns up to a programmer-requested number of random bytes
• Uses the unblocking random source by default

• May return less if there is insufficient entropy (e.g., random pool not initialized)

• May also be interrupted (e.g., by signals)

• getentropy(3) (wrapper around syscall) returns exactly specified amount of bytes or none
• Solves the problem of knowing when the pool is initialized, just check if successful



So what should you use now?

Are you 
PID 0?

Can you 
use non-file 
semantics?

Is 
getentropy
available?

Yes Yes
Use getentropy(3)

Use /dev/random
Yes

NoNo

Use /dev/urandom
No

Start

(shell scripts)

(for low-level programming in C or similar languages — use a higher-level wrapper/implementation if appropriate)



“Future” Changes

• So what about /dev/random? What’s the point of having something you’re not 
supposed to ever use?

• In BSD-land, /dev/random is actually a symbolic link to /dev/urandom now

• And as of Kernel 5.6 (March 2020, but not filtered down to all distros yet), 
/dev/random behaves as /dev/urandom after the pool is initialized! 
• The debate is over! And you can stop asking that question as a gotcha in job interviews :)

• However, since you can’t assume that people are running newer kernels, the previous 
flowchart is unchanged.



Quick Note: CSPRNGs on Other OSs

• Windows: use BCryptGenRandom (part of CryptoAPI: Next Generation) or rand_s for 
native code and RNGCryptoServiceProvider in .NET
• Both call into the same system managed CSPRNG

• iOS: Use SecRandom

• MacOS: Use SecRandom (preferred) or /dev/urandom

• Android (and any JVM): use java.security.SecureRandom

• JavaScript: crypto.randomBytes (NodeJS) / Crypto.getRandomValues (Browser)

• PHP: random_bytes / random_int

• Python: secrets module



Quick Takeaways

• Generating cryptographic-quality random numbers is hard

• If you’re not writing an init system, don’t use /dev/random

• Use getentropy(3) if you can, /dev/urandom if you can’t

• The difference between /dev/random and /dev/urandom is going to slowly 
disappear, but stick with the old advice for backwards compatibility



Questions?
Thank you.



Further Reading
• https://man7.org/linux/man-pages/man2/getrandom.2.html

• https://man7.org/linux/man-pages/man3/getentropy.3.html

• https://en.wikipedia.org/wiki/Entropy-supplying_system_calls

• Other OS’s:
• Windows: https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom and 

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rand-s?view=vs-2019 and 
https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netcore-
3.1

• MacOS/iOS: https://developer.apple.com/documentation/security/randomization_services

• Android: https://developer.android.com/reference/java/security/SecureRandom

• JVM: https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

• JavaScript: https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback (Node) / 
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues (Browser)

• PHP: https://www.php.net/manual/en/ref.csprng.php

• Python: https://docs.python.org/3/library/secrets.html

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man3/getentropy.3.html
https://en.wikipedia.org/wiki/Entropy-supplying_system_calls
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rand-s?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netcore-3.1
https://developer.apple.com/documentation/security/randomization_services
https://developer.android.com/reference/java/security/SecureRandom
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://www.php.net/manual/en/ref.csprng.php
https://docs.python.org/3/library/secrets.html

	Beyond /dev/urandom:�The State of Randomness in Linux
	Background: Random Number Generation
	Types of Random Number Generators
	Random Number Generation in Practice
	Random Number Generation in Practice — CSPRNGs
	Aside: Sources of Entropy
	Sources of Entropy — Hardware RNGs
	Why not skip the CSPRNG and use a hardware RNG if one is available?
	AMD RDRAND Bug
	Relevant XKCD
	So anyway, kernel CSPRNGs
	The Great Random Debate
	Problems With /dev/{u,}random
	CSPRNG System Calls —�getrandom(2) / getentropy(3) 
	So what should you use now?
	“Future” Changes
	Quick Note: CSPRNGs on Other OSs
	Quick Takeaways
	Questions?
	Further Reading

