

B en in the absence of

unpredif' ble 1

* How do we resolve this quandary?

P entropy” as

* Can hav “
the values repe

'Vﬁts, process info, hardware,
T network data, etc.
®* Not designed to be unpredictable

®* May have shorter periods
®* No guarantee that someone who sees N
O values can’t predict value N+1 ® Most importantly: designed to be
/) unpredictable

i

< S’randarcﬁlu-li ies do "_PRNG

®* CSPRNGs require diverse entropy sources — standard libraries in userland can’t provide

(* Also dangerous to get wrong, so push the responsibility elsewhere
@

® Includes

* Won't prdi"-‘ umbers | Fe is too low (blocks)

r

® Sources of e

* Idea is that even a loc ‘they can read kernel memory then they
don’t need to predict RNG outpu

(* 1/O ops, network traffic, time, etc.
©

Sources of Entropy — Hardware RNGs

Newer CPUS have clddi’rionql x86: RDRAND / RDSEED instructions fill memory with
source of enfropy: hardware RNG random bytes; ARM has equivalent

There are lots of ways to do this... but the actual
implementation is only known to CPU manufacturer

Randomness is provided
via hardware Claims to be “truly random” numbers

So why not just use that and skip the effort of making a CSPRNG?

\

O

D)

Why not skip the CSPRNG and use a hardware RNG
if one is available?

Speed Verifiability

* Hardware RNG can provide bytes * We don’t know how the hardware
only so fast RNG works

* CSPRNGs are as fast as the * This is an obvious target to backdoor

general CPU * If we relied solely on it and it was
backdoored, we'd be f*cked

Single point of failure

* If there's a problem with the
hardware RNG, also f*cked.

[+ me@banshee: /tmp/rdrand-test Q

me@banshee: /tmp/rdrand-test$./amd-rdrand-bug
Your RDRAND() returns -1 every time, which means it has the AMD bug.
me@banshee: /tmp/rdrand-test$./test-rdrand
RDRAND () OxFFFfffff
RDRAND () Oxffffffff
RDRAND () Oxffffffff
RDRAND () Oxffffffff
RDRAND () Oxffffffff
RDRAND () Oxffffffff
RDRAND () Oxffffffff
RDRAND () OXFFffffff
RDRAND () Oxffffffff
Oxffffffff
Oxffffffff
Oxffffffff
Oxffffffff
Oxffffffff
Oxffffffff
s Oxffffffff
pe P Oxffffffff
L4 leed IN ALE RDRAND () Oxffffffff
RDRAND () OXFFFfffff

RDRAND support bit in older CPUs 500 =TT
@

RDRAND ()
RDRAND ()

RDRAND ()

e RDRAND ()
. RDRAND ()
ISSUEeS (RDRAND ()

RDRAND ()

RDRAND ()

\l\)
1\@ Relevant XKCD

O

int getRﬁndamNumberO
return 4 // chosen by foir dice roll.

J/ quaranteed to be random.

O

https://xkcd.com/221/

'i<ing")

- Originclﬁddv mely critical ops (e.g., master key

generation), /dev/u random otherwise.

LN
\

/
O
® This led to a years-long internet+fleme-wer argument
about when if at all one should use /dev/{u, }random
The Great ol
® So when should you use them?
Nelglelelty
l ® The old answer: Always use /dev/urandom.
Debqte ® Sole exception: if you're PID 0O, since the random pool
O may not be initialized yet and it won’t tell you.

py pool, no

urandom

* Solution: gt

r

* May also be interru te

* getentropy(3) (wrapper drodh_dméys'dll returns exactly specified amount of bytes or none
/ ® Solves the problem of knowing when the pool is initialized, just check if successful
@

Start

(shell scrif

«—— ———
©
/> (for low-level programming in C or similar languages — use a higher-level wrapper/implementation if appropriate)

s yet),

® The d e i '-Téha in job interviews :)

* However, since you can’t assume that people are running newer kernels, the previous

(flowchart is unchanged.
@

®* MacOs

* Android ."-' / JV “ure andom

* JavaScript: crypto. randomBytes (NodeJS) / Crypto.getRandomValues (Browser)
S PHP: random bytes / random int
/3' Python: secrets module

¢ The gaing to slowly

r

disappé-‘,- out s ards cﬂgmpq’ribili’ry

Thank yo'. -

r

indom and

1
10
=

ron =MSDN8view=netcore-

MacOS /iOS: http . / /randomization services

M e

Android: https://developer.android.cc n/reference /java/security /SecureRandom
JVM: https:/ /docs.oracle.com/javase /8 /docs /api/java/security /SecureRandom.html

JavaScript: : is. i . to randombytes size callback (Node) /
https://developer.mozilla.org /en-US /docs /Web /APl /Crypto/getRandomValues (Browser)

PHP: https://www.php.net/manual/en/ref.csprng.php
Python: https://docs.python.org/3 /library /secrets.html

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://man7.org/linux/man-pages/man3/getentropy.3.html
https://en.wikipedia.org/wiki/Entropy-supplying_system_calls
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rand-s?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netcore-3.1
https://developer.apple.com/documentation/security/randomization_services
https://developer.android.com/reference/java/security/SecureRandom
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/getRandomValues
https://www.php.net/manual/en/ref.csprng.php
https://docs.python.org/3/library/secrets.html

	Beyond /dev/urandom:�The State of Randomness in Linux
	Background: Random Number Generation
	Types of Random Number Generators
	Random Number Generation in Practice
	Random Number Generation in Practice — CSPRNGs
	Aside: Sources of Entropy
	Sources of Entropy — Hardware RNGs
	Why not skip the CSPRNG and use a hardware RNG if one is available?
	AMD RDRAND Bug
	Relevant XKCD
	So anyway, kernel CSPRNGs
	The Great Random Debate
	Problems With /dev/{u,}random
	CSPRNG System Calls —�getrandom(2) / getentropy(3)
	So what should you use now?
	“Future” Changes
	Quick Note: CSPRNGs on Other OSs
	Quick Takeaways
	Questions?
	Further Reading

