
Adventures in
Perimeterless
Homelabbing
Shea Polansky

2020-11-07

BSides Orlando

shea@bsides:~$ whoami

 Does security for $BIG_TECH

 Software development + sysadmin background

 Moved to security consulting before landing current gig

 Breaks things for money

 Hosts an unwise amount of services in his house

 Cares about usable security

polansky.co  @0x5ca1e5

https://polansky.co/
https://twitter.com/0x5ca1e5

SwiftOnSecurity
@SwiftOnSecurity

Rule 777:
If you don’t make a system usable and secure, the user will
make it usable and insecure.

https://twitter.com/SwiftOnSecurity/status/1002383281550233601

Presenter
Presentation Notes
And usable security is going to be a theme in this talk so I’m going to open with a joke from one of my favorite twitter accounts that really underscores the challenge we as security professionals have to overcome when we’re building these fancy security measures

https://twitter.com/SwiftOnSecurity/status/1002383281550233601

Quick Disclaimer
I will be talking about specific software/technologies in this talk, some of which are commercial products. I have no relationship with any of
the projects in question, and any comments I make are purely based on my own tinkering, and definitely do not represent the views of
anyone else, especially not my employer. This is also not meant to be a complete survey of what’s out there; there are likely to be products
or technologies I didn’t encounter or didn’t find time to include.

Background
Perimeterless? Homelab?

Homelab /hōm-lab/

• A justification for a higher
power bill and a better
internet connection

• A fantastic way to learn
how to admin things

• 100% home-grown,
organic, cruelty-free
technical debt

https://redd.it/bsxz2eSlide borrowed from a talk I gave at SCaLE 18x with Morgan Gangwere

https://redd.it/bsxz2e
https://polansky.co/files/talks/SCaLE_18-Homelab_Shenanigans.pdf
https://www.socallinuxexpo.org/scale/18x/presentations/workshop-hosting-your-own-media-and-other-homelab-shenanigans
https://zaibatsutel.net/

Typical Home Network w/ Homelab

Internet

Secondary
security
perimeters

(some service)

Security perimeter

Presenter
Presentation Notes
So let’s talk about what this looks like at a topological level
You’ve got a normal home network with some PCs, and then you’re hosting some kind of service,
let’s say a media server so you can watch all your legally acquired creative-commons media
And you don’t want random people on the Internet to be able to access your media, maybe exploit it or just steal all your bandwidth,
so you do the smart thing and keep it behind your border firewall.
And that doesn’t necessarily mean a fancy enterprise firewall, it could just be your off the shelf one doing basic NATing.
(advance)
Now you’ve heard people like me yell at you that NAT isn’t a security feature so maybe you upgrade to a fancy enterprise router and get some VLANs setup to isolate everything

Internet

Remote Access

(some service)

Security perimeter

Secondary
security
perimeters

VPN

Presenter
Presentation Notes
So now you’re thinking “This is great, but I can’t access anything outside my house and I would like to be able to stream all my stuff while I’m waiting for my takeout order”
And you could just forward a port like a normal person but
A) I don’t trust the security of these DIY services
B) we’re homelabbing and that means we’re gonna do this Properly
And I’m sure you know what the answer to this problem is by now
(advance)
You’ll use a VPN to get your traffic past your security perimeter and then you’ll be able to stream to your heart’s content

And so VPNs solved every possible remote access
problem with perfect convenience and security.
We can all go home now, problem solved.

Homelab VPN Inconvenience

What about accessing stuff on computers you don’t own?

Internet

Security perimeter

Untrusted machine
Can’t/don’t want to install extra software

Presenter
Presentation Notes
So imagine you’re at a friend’s place (yeah I know, just pretend for a moment), and you want to watch a movie off your server on their media center PC.
But your only access is a VPN, and some newfangled one that isn’t built into the OS like IPSec
They aren’t going to want you to install random stuff on their PC just to access your server
And even if they did, you don’t necessarily want your creds just sitting on their machine!
That rules out just typing in username and password or sticking a flash drive with a private key on it
Now you can solve the untrustworthiness part with a yubikey or similar, the crypto happens on device so once you yank the dongle out the key is gone
But what about the software? Is there an easy way to access stuff securely without needing tons of software or configuration changes?
My attempt to answer this question is how I ended up diving into the real subject of this talk

“Zero Trust” without the buzzwords

Perimeterless Networking

Presenter
Presentation Notes
And that subject is what I’m calling “Perimeterless networking”, which is inspired by the “zero trust” buzzword craze but with a much more limited scope

“Zero Trust” Networking

Internet

Security perimeter

Security
perimeters

Presenter
Presentation Notes
So let’s talk about “zero trust” networking and what people actually mean when they talk about it
Now Imagine you’ve got this standard corporate network, there’s a web application, a database the web app talks to, and maybe some other servers
So you do what a normal network admin will do and start setting up some vlans and use those as your security boundaries like this
<advance>
So you’ve got a pretty standard corp net, you’ve got a desktop net and a services net, and there will be some firewall rules to let the desktop net talk to the web app and some VPN related stuff to allow remote users in as if they were on the desktop net
But this isn’t zero trust! A zero trust network would look more like this
<advance>
So now we have a “security perimeter” for every host, individually authenticating and authorizing every connection.
This is deceptively complicated – imagine when the user wants to use the web app
The web app authenticates the user, and then it goes to the database to ask it for information
And in a normal network, the database would just hand it over, but in a truly zero trust network the database wouldn’t just trust the web server, it would demand the web server prove its acting on behalf of a legit user, and then do its own authorization and access controls to make sure it’s retrieving the correct data
That sounds great, but it’s incredibly complicated in practice so most commercial software simply isn’t compatible with it
So let’s restrict our scope

Goals for a “Perimeterless” Network

1. Provide the same security

as a VPN

2. Be as convenient

and invisible to users

as possible

3. Work with existing

on-prem infra Internet

(some service)

Security perimeter

Secondary
security
perimeters

VPN

Security
perimeter

Presenter
Presentation Notes
So really what we want to do is eliminate the security perimeter at the network edge
In other words, we want to treat the desktops on our local network the same as remote clients.
<advance>
That means our solution has to both convenient enough for local employees and secure enough for remote employees, and work with our existing applications as much as possible.
After all, one answer would be to migrate everything to the cloud and then pay someone else to deal with it, but that’s not the point of a homelab and it’s certainly not possible for every enterprise app
Sounds like I’m asking to have my cake and eat it too, doesn’t it?

Perimeterless
Solutions

Perimeterless Middleware

 Mutual TLS

 Access Proxy

 Mesh VPNs

Side benefits

 Get strong SSO by default

 Centralize access controls

 Hopefully leverage hardware

security

Internet

Perimeterless
Middleware

Presenter
Presentation Notes
So this whole presentation started with me saying that we don’t want to trust individual applications to be directly exposed on the internet
So we’ll need some kind of middleware or box or proxy that we stick in front of all our applications
I tried a bunch of different versions of this and I’ll group my findings into three categories
Mutual TLS – that’s built into TLS already and there’s pretty good support from web browsers
Access Proxies – this is an actual proxy you stick in front of your applications that enforces access controls
Mesh VPNs
So the rest of this talk is basically going to be going over the pros and cons of each and showing off the user experience for these
But for all three kinds of solution, you get some really cool benefits
First, we’re taking the duties of authentication and authorization away from whatever applications we’re running. Now I know you’ve probably got some application in your environment that doesn’t support MFA or doesn’t support SSO or only supports 8 character passwords or is some other kind of special snowflake
If we take the duty of access controls away from that application, that doesn’t matter anymore, everything gets strong SSO
Second, we’re centralizing those access controls. You’re now creating this single location to give you insight into access patterns and the ability to just turn off access to individual services, per user, in one place
And finally, since we’re throwing out all the old access control solutions anyway we can maybe stick in some kind of hardware security to prevent credential theft and make things more convenient for users

Mutual TLS
The minimal additional software solution

Mutual TLS as Perimeterless Middleware

 TLS supports mutual authentication

 Issue every user a certificate from your

enterprise CA

 Stick a reverse proxy in front of your web

applications

 Make access control decisions based on certificate

properties

 Common name

 EKU fields (maybe even custom ones)

 Reverse proxy can forward user details to web

application to enable single sign on

 Security is very good – unauthenticated attack

surface is basically nothing, certificate parsing

routines are pretty mature

 Hardware security is readily achievable

 Most TLS implementations support PKCS#11

 Smart Cards, Yubikeys, TPMs all allow you to do MFA

 Security device won’t sign the TLS challenge without PIN

 PINs can be short – users will be happy

 They also keep keys out of main memory, so keys can’t

be stolen

Mutual TLS In Practice

Bastion Proxy

Application Host

Application Proxy

x-common-name: foo@example.com

Web Application

Mutual TLS

WAN/LAN

Directory
Service

Presenter
Presentation Notes
So this is what deploying mutual TLS in practice looks like
You’ve got some connection from somewhere, could be local, could be internet, remember the whole idea is that we don’t care too much about that
The whole idea is that we want our access method to be both secure enough and convenient enough that users will be able to use the same one regardless of where they are
And you’ve already done the PKI part of this, so every user has some kind of certificate, hopefully on a hardware backed store like a TPM or a yubikey
<advance>
So they go to talk to your application – we’re going to assume it’s a web app to start - and it hits your primary reverse proxy, which demands a client cert or it won’t even talk to you
And they get prompted for a PIN locally before the hardware security device signs their TLS challenge, so there’s your MFA
The reverse proxy then makes some access control decision to check if this user is allowed to talk to the application before forwarding it on
This is probably based on a centralized access control system like LDAP or a directory service
And then the reverse proxy forwards the connection to the application,
Now we’re running the application on the same host as another reverse proxy that is a lot simpler, it just wants a mutual TLS cert that only the bastion proxy has access to
And we’re using a reverse proxy for this because really most applications don’t support fine-grained TLS controls like this
And the main reason we’re doing mutual TLS twice like this is once we’re really really sure that connections are coming from the bastion proxy is that we can start relying on it to tell us who’s accessing the application
So now we have it pass the username from the certificate on and presto, we get seamless SSO
Just have to have the application read the username off the incoming header

Mutual TLS Implementation Specifics

 Clients

 Windows supports generating certificates on the TPM

 Browsers will use the system cert store

 On Linux you can give the browser a TPM PKCS#11 Module

 On MacOS, unfortunately no way to use the T2

 All major OSs support smart cards/YubiKeys

 Reverse proxy

 Nginx with auth_request module

 Some kind of access control server

 This is going to be somewhat custom; I recommend starting with simple LDAP to HTTP bridge

So why not just
do that?

 Things that don’t run in a browser won’t work

 Although this is somewhat easily solved with

stunnel + SNI

 PKIs are actually kinda hard

 Not everything supports mutual TLS

 Mobile browsers are wonky in particular

 Inflexible authentication

 MFA is not enforced by the server at all

 Just relying on the smart card to be well behaved

(and available)

 UX is terrible for edge cases

mTLS User Experience

 User is prompted for their SmartCard PIN on first connection

 Cached for some time, then prompted again later

 If they don’t have their smart card, no access period

 If there’s a problem, they get a generic browser error message about not being able to negotiate at TLS connection

 Not very understandable to normal users

 Self-service is difficult to impossible

 If services are protected by mTLS and you can’t negotiate a mTLS connection, you can’t self-service your mTLS credentials

Privileged Access Management + Access Proxies
Modernized Bastion Proxies

Privileged Access Management Solutions

 Very popular for cloud workloads

 Provide centralized MFA / ACLs for (typically) SSH

access to hosts

 Act as a bastion through which all traffic is funneled

 Provide logging, just-in-time access to hosts

Creds + MFA

Tunneled
SSH

Access Proxies

 Modernized, more flexible versions of the
previous mutual TLS setup

 Sort of like the principle of a PAM solution, but
applied to everything

 Proxy + integrated web application

 Handles login, access control rules, session
management, self-service

 Can allow more complex authentication
scenarios

 U2F, TOTP, hardware tokens, SMS, whatever

 Can allow very fine-grained authorization

 Source IP, access patterns, etc.

GET /app/

Login Page

Creds + MFA

“Access Granted”

GET /app/

Index Page

GET /app/
User: <foo>

User Access Proxy Application

COTS Access Proxies

— Identity Aware Proxy

 Sits directly in-line with HTTPS requests

 Handles both actual proxying and access control

 User login is handled via OIDC

 Open Source with “contact us for pricing”

enterprise version coming SoonTM

 No current free version limitations

— Authn/Authz Server

 Serves as the access control component only

 Must be integrated into your existing reverse proxy

 Users are from LDAP or local database

 Handles first+second factor itself

 Free and Open Source

 Support WebAuthn authentication

 Support complex access control rules based on
path, groups, etc.

 Homelab friendly!

Presenter
Presentation Notes
There are some other ones too, like oauth2-proxy, which is even a google project

https://www.pomerium.com/
https://www.authelia.com/
https://www.authelia.com/
https://www.authelia.com/

Access Proxies In Practice

Bastion Proxy

Application Host

Application Proxy

x-user-name: foo@example.com

Web Application

Mutual TLS

WAN/LAN

Directory
ServiceRegular TLS

Presenter
Presentation Notes
So as you can see, running an access proxy in practice basically looks the same at a network level as running it with just mutual TLS as your auth layer
The difference is in the actual user flow that I showed earlier, since there’s a real web app that your users have to use to login instead of just getting a cert prompt
So let’s see what this looks like

Access Proxy Benefits Over Pure mTLS

 More flexible authentication

 Self-service supported

 More flexible authorization

 E.g., prompt users to re-login if suspicious access patterns, accessing from different country

 Doesn’t rely on browser support for mTLS, OS support for hardware tokens

 UX is overall way better

 Can be much more flexible on authentication

 Much easier route to self-service credential management

 Can have intelligible error pages to users

Access Proxy Caveats

 Similar to mTLS in some ways

 Hard to integrate with non-browser solutions

 Can hack things together with custom cookie readers

 Basically doesn’t work at all for non-HTTP protocols (e.g., SSH)

 Some enterprises (e.g., Google) just use a custom SOCKS over HTTPS solution (AKA a VPN)

 Others use a separate PAM solution (which is more work and more complex)

 Plus you now are exposing a web app to the internet, so better make sure it’s secure

 See: Pulse Secure VPN

Mesh VPNs
The future of perimeterless (and zero trust) networking

Wait, I thought this
was about getting rid
of VPNs!

 Kinda! In my homelab, I don’t care

about risks from unknown devices

(since it’s just me)

 For enterprises, employees are

accessing from a limited set of

devices, either employer owned or

subject to MDM policies

 But let’s talk about the other

disadvantages of a VPN

Typical Road Warrior VPN Configuration

Internet

Security perimeter

Security perimeter
VPN Concentrator

VPN Regular TLS

Single point of failure

Presenter
Presentation Notes
So let’s talk about what a typical enterprise type vpn setup looks like
You’ve got some road warrior client that wants to connect to an internal service, so it runs some VPN software
And the idea is of course that it tunnels the normal connection in some kind of strongly mutually authenticated tunnel, maybe it’s TLS or maybe it’s something fancy like IPSEC or Wireguard
And it goes through this VPN concentrator appliance typically that unwraps the connections
So why are we unsatisfied with this?
<advance>
So first we have a single point of failure in our vpn concentrator
Even if we do some kind of HA configuration or something to take care of its availability, there’s still just one box you gotta pwn to win the whole game

Road Warrior VPNs in Complex Enterprises

Internet

West Coast Office
Security Perimeter

Cloud Provider VPC
Security Perimeter

Central Datacenter
Security Perimeter

Road Warrior VPN

Office File Server

Some App
Server

Some Cloud-
Hosted App

Site-to-Site VPN

Presenter
Presentation Notes
And the other problem is that most enterprises aren’t single-homed anymore
You’ve got some offices, maybe a datacenter, some cloud VPCs
And your workers need a secure connection to all of them
So you typically see something like this
<advance>
Your employees VPN into some kind of central location, and then stay within a site-to-site transit to get to anything else
And that works, but you end up with a lot of added latency and it gets complex to manage with more sites
So let’s talk about how a mesh VPN works to solve this problem

Mesh VPNs in Complex Enterprises

InternetPrivate WAN

Mesh VPN

Presenter
Presentation Notes
So the idea behind a mesh VPN is that you ditch your VPN concentrators and your site to site VPNs just like in the previous perimeterless scenarios
And instead you run the VPN agent on every host that needs to be on the VPN, and they all connect to each other automatically
Usually there’s a coordinator server involved but the actual connections are all direct
And instead your mesh VPN gives you this sort of magical private WAN that all your services and clients can connect to directly
Now this is great in theory, but these are kind of immature to be used for what we want, which is a true single-signon system
And let’s talk about the one that’s closest to being where we need so you can see why

ZeroTier: “A Global Ethernet Switch For Planet Earth”

 All clients connect to a global “WAN” identified by their public key

 You join a network by its controller’s public key

 The controller issues ACLs

 Simple: Allow from x to y

 Complex: Can assign tags, data to clients and make decisions based on that

 Network ACLs are enforced by each endpoint

 ACLs + client data + IP address ownership are signed by controller to prevent spoofing

 Hypothetically, you could bind IPs to LDAP and then make access control decisions based on those

 Since they’re unspoofable, they’re equivalent to a unique user identity (as long as you only listen on the ZT interface)

*

* Not a cult logo, I promise

Presenter
Presentation Notes
And that is ZeroTier, which you might have heard of

Potential ZeroTier Benefits

 Network ACLs are automatically distributed to all users + enforced cryptographically

 Spoofing attacks impossible

 Tunnels any layer 3 protocol

 “Just Works” across complex network topologies

 Could bind IP addresses to LDAP for user identification

 Incoming connection on ZT interface → LDAP lookup IP → make access control decision by user groups

So why not
ZeroTier (yet)?

No MFA support

Poor integration with existing
directory systems

Somewhat immature software

Presenter
Presentation Notes
So why did I bother with any of that other stuff? Why not just use ZeroTier?
First, it doesn’t currently have any MFA support
You can’t even cheat and store keys on hardware tokens yet
And without MFA support you’d have to have some kind of two layer auth system that wouldn’t be very good
Second, it currently integrates very poorly with existing systems. You can’t automatically bind devices to LDAP or import LDAP groups as ACL tags
And third, the software is in my experience just kind of immature. There was some crashing and bugs that didn’t make me think it would work very well as an enterprise scale tool. At least yet!
Now this isn’t to diss the ZT guys, the software is very cool and I’ll be watching it with interest. But it’s not there yet.

So what did I actually end up using?
Bringing this back to my actual homelab.

So what did I actually end up with?

Pomerium

Application Host

nginx

Plex/Etc

WAN/LAN

KeyCloak

Mutual TLS Regular TLS

nginx

Presenter
Presentation Notes
I’m actually pretty happy with how it turned out.
Traffic comes in through an nginx instance acting as an ingress proxy for a couple reasons, but the first is that it’s the only one with a publicly trusted cert, from letsencrypt of course
After that all traffic is mutually authenticated using my internal CA
Traffic comes in, gets shuttled off to Pomerium to do access controls
Login is handled via KeyCloak, which is an incredibly powerful authentication server, and I’m actually keeping KeyCloak behind pomerium with the login bits marked as public in Pomerium
This is to just provide an extra layer of security against any keycloak exploits, trying to keep my exposure minimal
My keycloak server is set to use WebAuthn for passwordless auth
When I go to login to something, all I have to do is use my biometrics or my yubikey and pin and I’m logged in
After login, everything gets passed onto each application, which is behind its own copy of nginx to terminate the mutual TLS
That nginx instance also does any necessary translation to enable SSO like changing which header the username is in
Now I do run some things that won’t work like this, like a mobile app for HomeAssistant, so I have some extra logic in the ingress nginx
<advance>
…to allow certain very limited traffic to bypass everything
For instance, it uses the HomeAssistant API to forward-authorize the mobile app so I can keep the homeassistant service off the open web while still allowing the mobile app to work
The way that works is that the HA API’s endpoints in nginx have extra logic to use forward authorization against homeassistant itself to check if the request is valid
Everything that isn’t gets forwarded to the usual Pomerium flow
For another application, I actually completely re-implemented its mobile login flow in Nginx’s lua support so that it wouldn’t need to hit the service at all
This is actually most of the work of setting this up – figuring out how to 1) adapt Pomerium’s auth info onto the service backend, and 2) work with any existing thick clients

Grafting Zero-Trust Auth Onto Existing Services

GET /someapp/ HTTP Basic Auth

Happy path: Browser app and backend with external auth support

Pomerium

Presenter
Presentation Notes
So let’s talk about doing that a little more
The happy path is for browser apps with built-in external authentication support
For those I just have to configure them to accept the right header or maybe use some nginx config to map it correctly

Grafting Zero-Trust Auth Onto Existing Services

GET /someapp/ mTLS

Alternate happy path: Browser and single-user backend

Pomerium

Presenter
Presentation Notes
And some apps don’t even need real authentication since they’re single user – think a simple dashboard
For those I can just rely on mutual TLS and then let Pomerium do its magic, no sweat

Grafting Zero-Trust Auth Onto Existing Services

GET /someapp/

POST /login?username=foo&pw=bar

Unhappy path: Browser and app without external auth support

Set-Cookie: blah
GET /someapp/

Pomerium Nginx

Presenter
Presentation Notes
Now let’s talk about some unhappy paths
The first is for when we’ve got a browser but the app doesn’t support external auth
For this my solution is to use some nginx lua scripts to check if there’s already a session cookie set, and if not, log the user in by simulating a POST to the login form or endpoint
And in the script I have a mapping of Pomerium user IDs to credentials
Ideally this would be stored in some kind of secrets management solution but I was lazy, that’s something for the future
In my experience this is a bit annoying to get right and it can be annoyingly involved if the application has a weird login flow, but it works
And I do this after the access proxy layer so that there’s no worries about any kind of auth bypasses or whatever happening

Grafting Zero-Trust Auth Onto Existing Services

GET /someapp/

POST /login?username=phone1&pw=

Unhappy path: Thick client and app with external auth support

Set-Cookie: blah
GET /someapp/

PomeriumNginx

Presenter
Presentation Notes
And there’s another unhappy path of course, which is when you’ve got a thick client like a mobile app and want to use that in our brave new perimeterless world
And what I do to handle that scenario is re-implement the authentication system for that app in nginx
So to do that and stay secure I use what is effectively a per-device token implemented as a username and password
The username is a device identifier like phone1
And the password is a giant random string
Now that would of course be unusable as a password but it only needs to be input once
So when the thick client goes to log in, it’s expecting to be talking to the real app, but it isn’t, it’s talking to nginx
But the actual login flow is the same and it can’t tell the difference, so we’re fine
And then once it’s logged in, I just bypass Pomerium completely since we’ve already authenticated
This isn’t perfect, a better solution would be to have nginx authenticate against pomerium and impersonate the correct user, but it’s good enough for my lab

Grafting Zero-Trust Auth Onto Existing Services

Very unhappy path: Non-HTTP Service

Pomerium

? ?

Presenter
Presentation Notes
So if you’ve been paying attention you’ll notice that basically everything mentioned so far is exclusively been based around HTTP
And of course most things are in fact HTTP nowadays, but not all of them
What if I want to SSH into my boxes or use CIFS or RDP?
And the answer is… I don’t really have a good answer for you
The best I can come up with is tunneling TCP over websockets, which I’m pretty sure is what Google does, but that’s going to be even more custom
I’ll probably do another talk on whatever I come up with!

User Experience Demo
Bringing it all together

Aside: WebAuthn

 Strong cryptographic authentication with universal browser support

 Challenge/response mechanism includes intended origin — nearly phishing proof

 Two authenticator types

 “roaming” authenticators (dongles like Yubikeys)

 “platform” authenticators (system secure element – TPM/TrustZone/T2/etc.)

 Can be used as a second factor, or first + second with user verification enabled

 Every major OS supports it in both modes via platform authenticators

 Windows Hello for Business also integrates it into AD/Kerberos/Enterprise PKI

 Please consider adopting, your users will thank you :)

How about applying this for real?
Let’s get enterprise.

The Pitch

• No more VPN
• Less/nearly no more time spent typing passwords in

Users will be happier

• Cryptographic authn available on most platforms
• Fine-grained access controls on all apps

Increased Security

• No more dealing with weird VPN issues
• Reduced licensing headache

Reduced Support Costs

Overall Rollout Strategy

Step zero: buy-in from management

SSO
• If you don’t already have SSO available you aren’t doing any of this, so start there.

Cover web applications first
• Nearly all perimeterless options are built for the Web first

Expand coverage to non-web apps
• Use custom tunnels or custom ingress logic

Iterate over time

Example Enterprise Implementation — Full MS/Azure

Azure AD

Azure Hosted
Web App

External Web
Service

On-Prem
Web Service

On-Prem
Domain Controller

ADFS Sync

GET /someapp/
SAML/Password Vaulting

Azure AD
Application Proxy

User Machine

https://www.microsoft.com/security/blog/2020/04/30/zero-trust-deployment-guide-azure-active-directory/

Presenter
Presentation Notes
Now let’s see what this looks like on paper. My example architecture is going to be the “all in on Microsoft” version.
We’re going to assume we’ve already got a Windows domain, so the firs thing we’re going to do is federate it to Azure AD
And we’re also going to get Hello For Business deployed because we want our users to be happy
And also we don’t want to get phished
Next we’re going to define conditional access policies
And they’ll be simple to start, like “no logins from China if since we don’t have any employees there”
But you can make them complex over time
Azure also has some managed fraud risk detection stuff you can enable
And finally once users are actually logged in they send their requests through the Azure Application Proxy
Which then forwards their info along to the correct application and seamlessly logs them in
And no matter whether that’s an on-prem app, a SaaS external app, or something in Azure itself, you get universal SSO, universal visibility and logging, and fine-grained access controls based on cryptographically verified identities

https://www.microsoft.com/security/blog/2020/04/30/zero-trust-deployment-guide-azure-active-directory/

Implementation Notes

 No matter what you do, this will be very, very custom

 Your enterprise almost certainly has services that will require custom logic and implementation weirdness

 Use a commercial system if you can — implementing yourself is a lot of work

 Azure AD with Conditional Access and their application proxy is expensive but incredibly powerful

 Cloudflare also just launched a similar option

 Use it as an opportunity to deploy modern authentication mechanisms

 Windows Hello For Business + U2F Authentication

 Prevents phishing, makes users happy about reduced password complexity rules

Thank you. Questions?

Links / References

 https://www.beyondcorp.com/ — Original paper that started me on this idea

 https://polansky.co/blog/tpm-backed-certificates-windows/ — TPM-backed certs under Windows

 https://github.com/tpm2-software/tpm2-pkcs11 — TPM PKCS#11 stack for Linux

 https://nginx.org/en/docs/http/ngx_http_auth_request_module.html — nginx module to provide access controls based

on external requests

 https://www.pomerium.com/ — Identity aware proxy

 https://www.authelia.com/ — Forward auth server

 https://www.keycloak.org/ — OpenID Connect / SAML server with extensive options / federation support

 https://www.zerotier.com/ — Mesh VPN / SD-WAN

 https://www.microsoft.com/security/blog/2020/04/30/zero-trust-deployment-guide-azure-active-directory/

 https://www.cloudflare.com/teams/access/ — Cloudflare Access Proxy

https://www.beyondcorp.com/
https://polansky.co/blog/tpm-backed-certificates-windows/
https://github.com/tpm2-software/tpm2-pkcs11
https://nginx.org/en/docs/http/ngx_http_auth_request_module.html
https://www.pomerium.com/
https://www.authelia.com/
https://www.keycloak.org/
https://www.zerotier.com/
https://www.microsoft.com/security/blog/2020/04/30/zero-trust-deployment-guide-azure-active-directory/
https://www.cloudflare.com/teams/access/

	Adventures in Perimeterless Homelabbing
	shea@bsides:~$ whoami
	Slide Number 3
	Quick Disclaimer
	Background
	Homelab /hōm-lab/
	Typical Home Network w/ Homelab
	Remote Access
	And so VPNs solved every possible remote access problem with perfect convenience and security.
	Homelab VPN Inconvenience
	Perimeterless Networking
	“Zero Trust” Networking
	Goals for a “Perimeterless” Network
	Perimeterless Solutions
	Mutual TLS
	Mutual TLS as Perimeterless Middleware
	Mutual TLS In Practice
	Mutual TLS Implementation Specifics
	So why not just do that?
	mTLS User Experience
	Privileged Access Management + Access Proxies
	Privileged Access Management Solutions
	Access Proxies
	COTS Access Proxies
	Access Proxies In Practice
	Access Proxy Benefits Over Pure mTLS
	Access Proxy Caveats
	Mesh VPNs
	Wait, I thought this was about getting rid of VPNs!
	Typical Road Warrior VPN Configuration
	Road Warrior VPNs in Complex Enterprises
	Mesh VPNs in Complex Enterprises
	ZeroTier: “A Global Ethernet Switch For Planet Earth”
	Potential ZeroTier Benefits
	So why not ZeroTier (yet)?
	So what did I actually end up using?
	So what did I actually end up with?
	Grafting Zero-Trust Auth Onto Existing Services
	Grafting Zero-Trust Auth Onto Existing Services
	Grafting Zero-Trust Auth Onto Existing Services
	Grafting Zero-Trust Auth Onto Existing Services
	Grafting Zero-Trust Auth Onto Existing Services
	User Experience Demo
	Aside: WebAuthn
	How about applying this for real?
	The Pitch
	Overall Rollout Strategy
	Example Enterprise Implementation — Full MS/Azure
	Implementation Notes
	Thank you.
	Links / References

